Extraction of Synthetic Cannabinoids (SPICE) from Oral Fluid Using ISOLUTE® SLE+ prior to GC-MS Analysis

This application note describes the extraction of a range of synthetic cannabinoids and metabolites from oral fluid collected using the Quantisal™ Oral Fluid Collection Device prior to GC-MS analysis. An effective and efficient ISOLUTE® SLE+ protocol has been developed that is optimized for loading volumes of either 400 µL or 1 mL of matrix. The simple sample preparation procedure delivers clean extracts and analyte recoveries greater than 80% with RSDs <10% for all analytes.

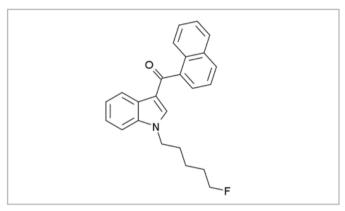


Figure 1. An example of a synthetic cannabinoid, AM-2201

Introduction

ISOLUTE® SLE+ Supported Liquid Extraction plates and columns offer an efficient alternative to traditional liquid-liquid extraction (LLE), providing high analyte recoveries, no emulsion formation, and significantly reduced sample preparation.

Analytes

UR-144, JWH-073, JWH-018, 5-hydroxypentyl-JWH250, 3-hydroxybutyl-JWH073, AM-2201, 4-hydroxypentyl-JWH-018, 5-hydroxypentyl-JWH-018, JWH-200

Sample Preparation Procedure

Sample Collection Collect oral fluid samples as per collection device usage instructions. The Quantisal device

uses a paddle to collect ~1 mL oral fluid, which is subsequently stored in a sealed tube

containing proprietary buffer until required.

ISOLUTE SLE+ 400 µL Sample Volume columns, part number 820-0055-B

Sample Loading: Load 400 μ L of the buffered sample direct from the collection device onto the column and

apply a pulse of vacuum or positive pressure to initiate flow. Allow the sample to adsorb for 5

minutes.

Analyte Extraction: Apply hexane/ethyl acetate (95/5, v/v, 1 mL) and allow to flow under gravity for 5 minutes.

Apply a further aliquot of hexane /ethyl acetate (95/5, v/v, 1 mL) and allow to flow for another

5 minutes.

Apply vacuum or positive pressure to pull through any remaining extraction solvent.

ISOLUTE® SLE+ 1 mL Sample Volume columns, part number 820-0140-C

Sample Loading: Load 1 mL of the buffered sample direct from the collection device onto the column and apply

a pulse of vacuum or positive pressure to initiate flow. Allow the sample to adsorb

for 5 minutes

Analyte Extraction: Apply hexane/ethyl acetate (95/5, v/v, 2.5 mL) and allow to flow under gravity for 5 minutes.

Apply a further aliquot of hexane/ethyl acetate (95/5, v/v, 2.5 mL) and allow to flow for

another 5 minutes under gravity.

Apply vacuum or positive pressure to pull through any remaining extraction solvent.

Post elution and Derivatisation:

Evaporate extract to dryness in a stream of air or nitrogen using a Biotage® SPE Dry (40 °C, 20 to 40 L/min) or TurboVap® (1.5 bar at 40 °C for 40 mins). Reconstitute with ethyl acetate (250 μ L) and vortex for 20 seconds. Transfer to a high recovery glass vial and evaporate to dryness.

Add ethyl acetate (25 μ L) and BSTFA:TMCS 99:01 (25 μ L) and cap with a non-split cap . Vortex for 20 seconds and heat vial in a heating block set to 70 °C, for 30 minutes. Remove vial from

the block and allow to cool.

GC Conditions

Instrument: Agilent 7890A with QuickSwap

Column: SGE capillary column; BPX5, 30 m x 0.25 mm ID x 0.25 μm

Carrier: Helium 1.2 mL/min (constant flow)

Inlet: 250 °C, Splitless, purge flow: 50 mL/min at 1.5 min, septum purge flow: 3 mL/min

Injection: 1 μ L

Wash Solvent: Ethyl acetate

Oven: Initial Temperature 50 °C, hold for 1 minute

Ramp 20 °C/min to 300 °C, hold for 2 minutes Ramp 20 °C/min to 310 °C, hold for 2 minutes Ramp 20 °C/min to 320 °C, hold for 2 minutes Ramp 20 °C/min to 330 °C, hold for 3 minutes

Post Run: Backflush for 2.4 minutes (3 void volumes)

Transfer Line: 280 °C

MS Conditions

Instrument: Agilent 5975C

Source: 230 °C

Quadrupole: 150 °C

MSD mode: SIM

SIM Parameters

Table 1. Ions acquired in the Selected Ion Monitoring (SIM) mode

SIM Group	Analyte	Target (Quant) Ion	1 st Qual Ion	2 nd Qual Ion	3 rd Qual Ion
1	UR-144	214	296	311	N/A
2	JWH-073	327	200	310	N/A
3	JWH-018	341	214	324	N/A
3	5-hydroxypentyl-JWH-250	302	228	N/A	N/A
6	3-hydroxybutyl-JWH-073	285	270	415	N/A
7	AM-2201	359	284	342	N/A
8	4-hydroxypentyl-JWH-018	429	270	284	296
9	5-hydroxypentyl-JWH-018	270	284	414	429
10	JWH-200	100	384	N/A	N/A

Results

This optimized ISOLUTE® SLE+ protocol demonstrated analyte recoveries ranging from 80-110% in 4 different oral fluid donors. RSDs were below 10% for all. **Figure 2**. shows analyte recovery percentage from a single donor's oral fluid.

Sample volumes of either 400 µL or 1 mL can be extracted using the appropriate ISOLUTE SLE+ column format.

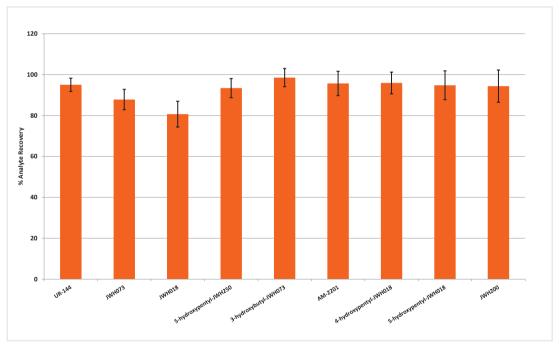


Figure 2. Typical analyte % recoveries for extracted synthetic cannabinoids and metabolites from oral fluid (n=7) using the ISOLUTE® SLE+ protocol.

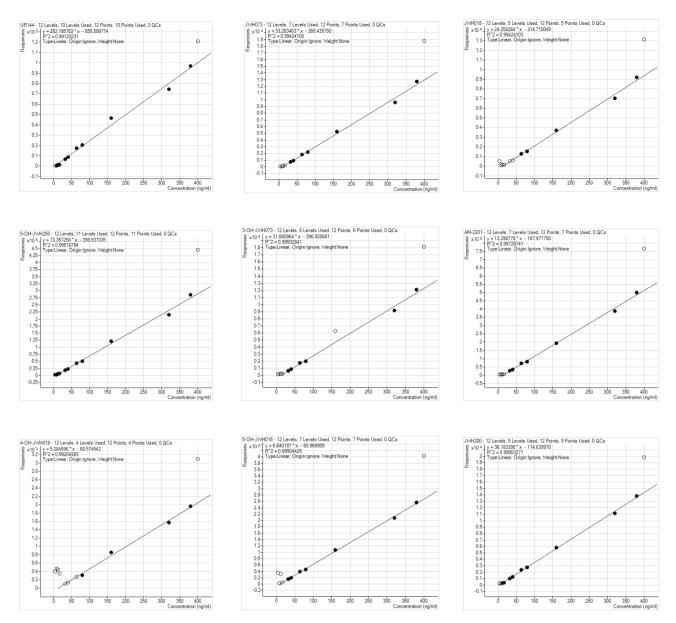


Figure 3. Calibration curves for extracted levels of spiked oral fluid from 4 ng/mL to 400 ng/mL using the 1 mL sample volume ISOLUTE® SLE+ column format showing r^2 values ranging from 0.9912 to 0.9990.

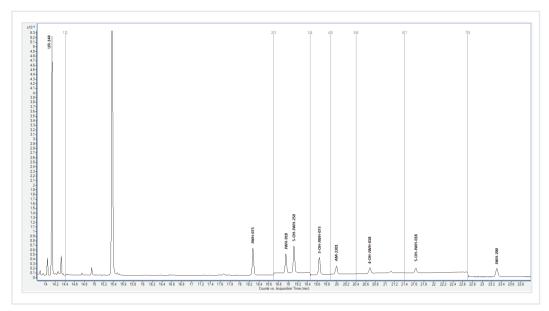


Figure 4. SIM chromatogram for oral fluid spiked at 160 ng/mL.

Table 2. Lower Limits of Quantitation (LLOQ) using the 400 μL sample volume procedure.

Analyte	Lower Limit Of Quantitation
UR-144	20 ng/mL
JWH-073	100 ng/mL
JWH-018	200 ng/mL
5-hydroxypentyl-JWH-250	20 ng/mL
3-hydroxybutyl-JWH-073	80 ng/mL
AM-2201	80 ng/mL
4-hydroxypentyl-JWH-018	200 ng/mL
5-hydroxypentyl-JWH-018	100 ng/mL
JWH-200	40 ng/mL

Table 3. Lower Limits of Quantitation (LLOQ) using the 1 mL sample volume procedure

Analyte	Lower Limit Of Quantitation
UR-144	8 ng/mL
JWH-073	32 ng/mL
JWH-018	64 ng/mL
5-hydroxypentyl-JWH-250	4 ng/mL
3-hydroxybutyl-JWH-073	32 ng/mL
AM-2201	32 ng/mL
4-hydroxypentyl-JWH-018	80 ng/mL
5-hydroxypentyl-JWH-018	32 ng/mL
JWH-200	12 ng/mL

Ordering Information

Part Number	Description	Quantity
820-0055-B	ISOLUTE® SLE+ 400 µL Sample Volume Columns	50
820-0140-C	ISOLUTE® SLE+ 1 mL Sample Volume Columns	30
PPM-48	Biotage® PRESSURE+ 48 Positive Pressure Manifold 48 Position	1
SD-9600-DHS-EU	Biotage® SPE Dry Sample Concentrator System 220/240 V	1
SD-9600-DHS-NA	Biotage® SPE Dry Sample Concentrator System 100/120 V	1
C103198	TurboVap® 96 without racks 100/120 VAC	1
C103199	TurboVap® LV without racks 220/240 VAC	1

For the latest application notes visit www.biotage.com

EUROPE

Main Office: +46 18 565900
Toll Free: +800 18 565710
Fax: +46 18 591922
Order Tel: +46 18 565710
Order Fax: +46 18 565705
order@biotage.com
Support Tel: +46 18 56 59 11
Support Fax: + 46 18 56 57 11
eu-1-pointsupport@biotage.com

NORTH & LATIN AMERICA

Main Office: +1 704 654 4900
Toll Free: +1 800 446 4752
Fax: +1 704 654 4917
Order Tel: +1 704 654 4900
Order Fax: +1 434 296 8217
ordermailbox@biotage.com
Support Tel: +1 800 446 4752
Outside US: +1 704 654 4900
us-1-pointsupport@biotage.com

JAPAN

Tel: +81 3 5627 3123
Fax: +81 3 5627 3121
jp_order@biotage.com
jp-1-pointsupport@biotage.com

CHINA

Tel: +86 21 2898 6655
Fax: +86 21 2898 6153
cn_order@biotage.com
cn-1-pointsupport@biotage.com

To locate a distributor, please visit our website at www.biotage.com

Part Number: AN779

© 2013 Biotage. All rights reserved. No material may be reproduced or published without the written permission of Biotage.

Information in this document is subject to change without notice and does not represent any commitment from Biotage. E&OE. Product and company names mentioned herein may be trademarks or registered trademarks and/or service marks of their respective owners, and are used only for explanation and to the owners' benefit, without intent to infringe. Quantisal is a trademark of Immunalysis, Pomona, CA91767, USA.

For more information visit www.biotage.com.

