Extraction of Synthetic Cannabinoids from Hydrolyzed Urine Using ISOLUTE® SLE+ Prior to GC-MS Analysis

This application note describes the extraction of a range of synthetic cannabinoids and metabolites from hydrolyzed human urine prior to GC-MS.

Figure 1. An example of a synthetic cannabinoid, AM2201

Introduction

ISOLUTE® Supported Liquid Extraction (SLE+) plates and columns offer an efficient alternative to traditional liquid-liquid extraction (LLE) for bioanalytical sample preparation, providing high analyte recoveries, no emulsion formation, and significantly reduced sample preparation.

This application note describes effective and efficient ISOLUTE SLE+ protocols optimized for sample loading volumes of either 400 μL or 1 mL. The simple sample preparation procedure delivers clean extracts and analyte recoveries greater than 83% with RSDs of <10% for all analytes.

Analytes

UR144, JWH073, JWH018, 5-hydroxypentyl-JWH250, 3-hydroxybutyl-JWH073, AM2201, 4-hydroxypentyl-JWH018, 5-hydroxypentyl-JWH018, JWH200

Sample Preparation Procedure

Sample Pre-treatment Dilute urine (1 mL) with 100 mM ammonium acetate buffer at pH 5 (950 µL) and

β-Glucuronidase enzyme (50 μL, equivalent to approximately 4500 U/mL of urine). Hydrolyze

with heat in a water bath at 60 °C for 2 hours.

ISOLUTE SLE+ 400 µL Sample Volume Columns, Part Number 820-0055-B

Sample Loading: Load the pre-treated hydrolyzed urine (400 µL total volume) onto the column and apply a pulse

of vacuum or positive pressure to initiate flow. Allow the sample to adsorb for 5 minutes.

Analyte Extraction: Apply hexane: ethyl acetate (90:10, v/v, 1 mL) and allow to flow under gravity for 5 minutes.

Apply a further 1 mL aliquot of hexane: ethyl acetate (90: 10, v/v) and allow to flow for another 5 minutes. Apply vacuum or positive pressure to pull through any remaining extraction solvent.

ISOLUTE SLE+ 1 mL Sample Volume Columns, Part Number 820-0140-C

Sample Loading: Load the pre-treated hydrolyzed urine (1 mL) onto the column and apply a pulse of vacuum or

positive pressure to initiate flow. Allow the sample to adsorb for 5 minutes.

Analyte Extraction: Apply hexane: ethyl acetate (90:10, v/v, 2.5 mL) and allow to flow under gravity for 5 minutes.

Apply a further aliquot of hexane: ethyl acetate (90:10, v/v, 2.5 mL) and allow to flow for another 5 minutes. Apply vacuum or positive pressure to pull through any remaining extraction

solvent.

Post Elution and Dry the extract in a stream of air or nitrogen using a SPE Dry (30°C, 20 to 40 L/min) or TurboVap

(1.5 bar at 40 °C for 30 mins). Upon dryness, add 50 μ L ethyl acetate and 50 μ L BSTFA:TMCS 99:01. Vortex for 20 seconds and transfer to a high recovery glass vial and cap with a non-split cap. Heat vial in a heating block set to 70 °C, for 30 minutes. Remove vial from the block and

allow to cool.

Reconstitution:

GC Conditions

Instrument: Agilent 7890A with QuickSwap

Column: SGE capillary column; BPX5, 30 m x 0.25 mm ID x 0.25 μm

Carrier: Helium 1.2 mL/min (constant flow)

Inlet: 250 °C, Splitless, purge flow: 50 mL/min at 1.5 min, septum purge flow: 3 mL/min

Injection: 1 µL

Wash solvents: ethyl acetate

Oven: Initial temperature 50 °C

Ramp 20°C/min to 300°C, hold for 2 minutes
Ramp 20°C/min to 310°C, hold for 2 minutes
Ramp 20°C/min to 320°C, hold for 2 minutes

Ramp 20°C/min to 330°C, hold for 3 minutes

Post Run Backflush for 2.76 minutes (3 void volumes)

Transfer Line: 280 °C

MS Conditions

Instrument: Agilent 5975C

Source: 230 °C

Quadrupole: 150 °C

MSD mode SIM

SIM Parameters

Table 1. Ions acquired in the Selected Ion Monitoring (SIM) mode

SIM Group	Analyte	Target (Quant) Ion	1 st Qual Ion	2 nd Qual Ion	3 rd Qual Ion
1	UR144	214	296	311	
2	JWH073	327	200	310	
3	JWH018	341	214	324	
3	5-hydroxypentyl-JWH250	302	228		
4	3-hydroxybutyl-JWH073	285	270	415	
5	AM2201	359	284	342	
6	4-hydroxypentyl-JWH018	429	270	284	296
7	5-hydroxypentyl-JWH018	270	284	414	429
8	JWH200	100	384		

Results

This ISOLUTE® SLE+ protocol demonstrated analyte recoveries ranging from 83-112% in 4 urine donors. The average analyte recovery, averaged in 4 urine sets of n=7, was 96%. **Figure 2** shows a single urine donor. RSDs were below 10% for all analytes for all donors.

Figure 2. Typical analyte % recoveries for the application analytes (n=7) using the ISOLUTE $^{\otimes}$ SLE+ protocol

Figure 3. GC-MS chromatography for the application analytes from hydrolyzed urine spiked at 100 ng/mL

Figure 4. Calibration curves for extracted levels of spiked urine using 1 mL ISOLUTE® SLE+ format from 5 ng/mL to 200 ng/mL showing r² values ranging from 0.9906 to 0.9997.

Table 2. Limits of Quantitation using the ISOLUTE® SLE+ 400 μL format (200 μL urine)

Analyte	Extracted LOQ
UR144	37.5 ng/mL
JWH073	37.5 ng/mL
JWH018	37.5 ng/mL
5-hydroxypentyl-JWH250	12.5 ng/mL
3-hydroxybutyl-JWH073	37.5 ng/mL
AM2201	37.5 ng/mL
4-hydroxypentyl-JWH018	37.5 ng/mL
5-hydroxypentyl-JWH018	37.5 ng/mL
JWH200	75 ng/mL due to qualifier ratios

Table 3. Limits of Quantitation using the ISOLUTE $^{\otimes}$ SLE+ 1 mL format (500 μ L urine)

Analyte	Extracted LOQ
UR144	15 ng/mL
JWH073	15 ng/mL
JWH018	15 ng/mL
5-hydroxypentyl-JWH250	5 ng/mL
3-hydroxybutyl-JWH073	15 ng/mL
AM2201	15 ng/mL
4-hydroxypentyl-JWH018	15 ng/mL
5-hydroxypentyl-JWH018	15 ng/mL
JWH200	30 ng/mL due to qualifier ratios

Ordering Information

Part Number	Description	Quantity
820-0055-B	ISOLUTE® SLE+ 400 μL Supported Liquid Extraction Column	50
820-0140-C	ISOLUTE® SLE+ 1 mL Supported Liquid Extraction Column	30
121-9600	Biotage® VacMaster™-96 Sample Processing Manifold	1
PPM-48	Biotage® PRESSURE+ 48 Positive Pressure Manifold 48 Position	1
SD-9600-DHS-EU	Biotage® SPE Dry Sample Concentrator System 220/240 V	1
SD-9600-DHS-NA	Biotage® SPE Dry Sample Concentrator System 100/120 V	1
C103263	TurboVap® 96 100/120 VAC	1
C103264	TurboVap® 96 1220/240 VAC	1

For the latest application notes visit www.biotage.com

EUROPE

Main Office: +46 18 565900 Toll Free: +800 18 565710 Fax: +46 18 591922 Order Tel: +46 18 565710 Order Fax: +46 18 565705 order@biotage.com **NORTH & LATIN AMERICA**

Main Office: +1 704 654 4900 Toll Free: +1 800 446 4752 Fax: +1 704 654 4917 Order Tel: +1 704 654 4900 Order Fax: +1 434 296 8217 ordermailbox@biotage.com **JAPAN**

Tel: +81 3 5627 3123 Fax: +81 3 5627 3121 jp_order@biotage.com CHINA

Tel: +86 21 2898 6655 Fax: +86 21 2898 6153 cn_order@biotage.com

To locate a distributor, please visit our website at www.biotage.com

